Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Netw Physiol ; 3: 1225736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731743

RESUMO

Phenotypic plasticity of cancer cells can lead to complex cell state dynamics during tumor progression and acquired resistance. Highly plastic stem-like states may be inherently drug-resistant. Moreover, cell state dynamics in response to therapy allow a tumor to evade treatment. In both scenarios, quantifying plasticity is essential for identifying high-plasticity states or elucidating transition paths between states. Currently, methods to quantify plasticity tend to focus on 1) quantification of quasi-potential based on the underlying gene regulatory network dynamics of the system; or 2) inference of cell potency based on trajectory inference or lineage tracing in single-cell dynamics. Here, we explore both of these approaches and associated computational tools. We then discuss implications of each approach to plasticity metrics, and relevance to cancer treatment strategies.

2.
Cancers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900269

RESUMO

Small cell lung cancer (SCLC) is an aggressive cancer recalcitrant to treatment, arising predominantly from epithelial pulmonary neuroendocrine (NE) cells. Intratumor heterogeneity plays critical roles in SCLC disease progression, metastasis, and treatment resistance. At least five transcriptional SCLC NE and non-NE cell subtypes were recently defined by gene expression signatures. Transition from NE to non-NE cell states and cooperation between subtypes within a tumor likely contribute to SCLC progression by mechanisms of adaptation to perturbations. Therefore, gene regulatory programs distinguishing SCLC subtypes or promoting transitions are of great interest. Here, we systematically analyze the relationship between SCLC NE/non-NE transition and epithelial to mesenchymal transition (EMT)-a well-studied cellular process contributing to cancer invasiveness and resistance-using multiple transcriptome datasets from SCLC mouse tumor models, human cancer cell lines, and tumor samples. The NE SCLC-A2 subtype maps to the epithelial state. In contrast, SCLC-A and SCLC-N (NE) map to a partial mesenchymal state (M1) that is distinct from the non-NE, partial mesenchymal state (M2). The correspondence between SCLC subtypes and the EMT program paves the way for further work to understand gene regulatory mechanisms of SCLC tumor plasticity with applicability to other cancer types.

3.
Cell Syst ; 13(9): 690-710.e17, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35981544

RESUMO

Small cell lung cancer (SCLC) tumors comprise heterogeneous mixtures of cell states, categorized into neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. NE to non-NE state transitions, fueled by plasticity, likely underlie adaptability to treatment and dismal survival rates. Here, we apply an archetypal analysis to model plasticity by recasting SCLC phenotypic heterogeneity through multi-task evolutionary theory. Cell line and tumor transcriptomics data fit well in a five-dimensional convex polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterparts. These tasks, supported by knowledge and experimental data, include proliferation, slithering, metabolism, secretion, and injury repair, reflecting cancer hallmarks. SCLC subtypes, either at the population or single-cell level, can be positioned in archetypal space by bulk or single-cell transcriptomics, respectively, and characterized as task specialists or multi-task generalists by the distance from archetype vertex signatures. In the archetype space, modeling single-cell plasticity as a Markovian process along an underlying state manifold indicates that task trade-offs, in response to microenvironmental perturbations or treatment, may drive cell plasticity. Stifling phenotypic transitions and plasticity may provide new targets for much-needed translational advances in SCLC. A record of this paper's Transparent Peer Review process is included in the supplemental information.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Plasticidade Celular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia
4.
Genes Dev ; 35(11-12): 847-869, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34016693

RESUMO

ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição SOX9/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Crista Neural/citologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Células-Tronco/citologia
5.
J Thorac Oncol ; 16(7): 1211-1223, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839362

RESUMO

INTRODUCTION: The programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors, atezolizumab and durvalumab, have received regulatory approval for the first-line treatment of patients with extensive-stage SCLC. Nevertheless, when used in combination with platinum-based chemotherapy, these PD-L1 inhibitors only improve overall survival by 2 to 3 months. This may be due to the observation that less than 20% of SCLC tumors express PD-L1 at greater than 1%. Evaluating the composition and abundance of checkpoint molecules in SCLC may identify molecules beyond PD-L1 that are amenable to therapeutic targeting. METHODS: We analyzed RNA-sequencing data from SCLC cell lines (n = 108) and primary tumor specimens (n = 81) for expression of 39 functionally validated inhibitory checkpoint ligands. Furthermore, we generated tissue microarrays containing SCLC cell lines and patient with SCLC specimens to confirm expression of these molecules by immunohistochemistry. We annotated patient outcomes data, including treatment response and overall survival. RESULTS: The checkpoint protein B7-H6 (NCR3LG1) exhibited increased protein expression relative to PD-L1 in cell lines and tumors (p < 0.05). Higher B7-H6 protein expression correlated with longer progression-free survival (p = 0.0368) and increased total immune infiltrates (CD45+) in patients. Furthermore, increased B7-H6 gene expression in SCLC tumors correlated with a decreased activated natural killer cell gene signature, suggesting a complex interplay between B7-H6 expression and immune signature in SCLC. CONCLUSIONS: We investigated 39 inhibitory checkpoint molecules in SCLC and found that B7-H6 is highly expressed and associated with progression-free survival. In addition, 26 of 39 immune checkpoint proteins in SCLC tumors were more abundantly expressed than PD-L1, indicating an urgent need to investigate additional checkpoint targets for therapy in addition to PD-L1.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Antígeno B7-H1 , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Intervalo Livre de Progressão , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética
6.
Cancer Cell ; 39(3): 346-360.e7, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33482121

RESUMO

Despite molecular and clinical heterogeneity, small cell lung cancer (SCLC) is treated as a single entity with predictably poor results. Using tumor expression data and non-negative matrix factorization, we identify four SCLC subtypes defined largely by differential expression of transcription factors ASCL1, NEUROD1, and POU2F3 or low expression of all three transcription factor signatures accompanied by an Inflamed gene signature (SCLC-A, N, P, and I, respectively). SCLC-I experiences the greatest benefit from the addition of immunotherapy to chemotherapy, while the other subtypes each have distinct vulnerabilities, including to inhibitors of PARP, Aurora kinases, or BCL-2. Cisplatin treatment of SCLC-A patient-derived xenografts induces intratumoral shifts toward SCLC-I, supporting subtype switching as a mechanism of acquired platinum resistance. We propose that matching baseline tumor subtype to therapy, as well as manipulating subtype switching on therapy, may enhance depth and duration of response for SCLC patients.


Assuntos
Imunidade/imunologia , Neoplasias Pulmonares/imunologia , Carcinoma de Pequenas Células do Pulmão/imunologia , Fatores de Transcrição/imunologia , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Imunidade/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Nus , Prognóstico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico
7.
PLoS Comput Biol ; 15(10): e1007343, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31671086

RESUMO

Adopting a systems approach, we devise a general workflow to define actionable subtypes in human cancers. Applied to small cell lung cancer (SCLC), the workflow identifies four subtypes based on global gene expression patterns and ontologies. Three correspond to known subtypes (SCLC-A, SCLC-N, and SCLC-Y), while the fourth is a previously undescribed ASCL1+ neuroendocrine variant (NEv2, or SCLC-A2). Tumor deconvolution with subtype gene signatures shows that all of the subtypes are detectable in varying proportions in human and mouse tumors. To understand how multiple stable subtypes can arise within a tumor, we infer a network of transcription factors and develop BooleaBayes, a minimally-constrained Boolean rule-fitting approach. In silico perturbations of the network identify master regulators and destabilizers of its attractors. Specific to NEv2, BooleaBayes predicts ELF3 and NR0B1 as master regulators of the subtype, and TCF3 as a master destabilizer. Since the four subtypes exhibit differential drug sensitivity, with NEv2 consistently least sensitive, these findings may lead to actionable therapeutic strategies that consider SCLC intratumoral heterogeneity. Our systems-level approach should generalize to other cancer types.


Assuntos
Carcinoma de Pequenas Células do Pulmão/classificação , Carcinoma de Pequenas Células do Pulmão/metabolismo , Algoritmos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Teorema de Bayes , Linhagem Celular Tumoral , Análise por Conglomerados , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos , Camundongos , Modelos Teóricos , Análise de Sistemas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...